
I S R A E L  J O U R N A L  OF M A T H E M A T I C S  82 (1993)~ 45 -86  

EMBEDDINGS OF THE GROUP L(2, 13) 
IN GROUPS OF LIE TYPE E6 

BY 

ARJEH M. COHEN 

Dept. AM, CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands 

AND 

DAVID B. WALES 

Caltech, Sloan Lab, Pasadena, CA 911~5, USA 

Dedicated to John Thompson for his keen interest 
in broad areas of mathematics and in mathematicians 

ABSTRACT 

In this paper we show there is exactly one conjugacy class of subgroups of 

Es(C) isomorphic to L(2, 13) with each of the characters 13 % 14 and 1 + 

12 + 14 on a 27-dimensional module for Es. The one with character 13 + 14 

is a subgroup of the irreducible closed subgroup of type G2. There is a 

unique conjugacy class for each of the three algebraic conjugate characters 

1 + 12 + 14. Our arguments have applications to fields of characterkstic 

prime to [L(2, 13)1. 

1. I n t r o d u c t i o n  

In this paper we consider embeddings of L(2, 13) as a subgroup of F4 or E6. These 

embeddings appear as subgroups of E6 and F4 over various fields. Aschbacher 

[AsI-IV] has given a list of all possible maximal subgroups of the simple group 

E6(k)  and so has Magaard [Mag] for F, ( k )  for large classes of fields k. In each case 

they left open the possibility of such embeddings. In [CW92] we were also faced 

with the possible existence of such embeddings over C. The possible embeddings 

are described by their character on the 27 dimensional space K acted on by E6 

(see [CW92]) and its restriction to F4. The explicit actions we consider here on 
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K are 13+ 14 for Es and 1 + 12+ 14 for F4. We only deal here with characteristics 

prime to IL(2,13)1 and so the character descriptions apply. Here the integers 1, 

12, 13 and 14 refer to the first characters of L(2, 13) listed in the Atlas [Atlas] 

with the corresponding degree. There are two characters of degree 14; three of 

degree 12. The second character of degree 14 does not occur in any embedding 

(see [CW92]). The three characters of degree 12 are algebraically conjugate. 

In this paper  we construct matrices for the action of L(2,13) acting on K 

with character 13 + 14 and show that  this action is unique. It is known that  

Ee contains a G2 which in turn contains an L(2, 13) which has this character. 

This means that  any L(2, 13) with this character on K must be in a G2 and 

in turn is contained within a closed proper subgroup of positive dimension. We 

also develop enough information to show there is a unique conjugacy class of 

subgroups isomorphic to L(2, 13) with character 1 + 12 + 14. 

The Borel subgroup of L(2, 13) is a Frobenius group of order 78. The restric- 

tions to such a subgroup of the two L(2, 13) characters 1 + 12 + 14 and 13 + 14 

coincide. In Section 2 we show that  there is a unique class of Frobenius groups of 

order 13 .6  with the appropriate character. The rest of the paper  is organized as 

follows. In Section 3 we state the main theorem for the complex numbers,  C. In 

Section 4 we analyze the possibilities for the 14 dimensional subspace common 

to both  embeddings and determine it to within a few possibilities. In Section 5 

we determine the action on the 13 dimensional subspace for the embedding with 

character 13 + 14 and show it is unique. In section 6 we show there is a unique 

solution (up to algebraic conjugacy) for the embedding in which the character is 

1 + 12+ 14. In Section 7 we find a solution for the each of the cases over the com- 

plex numbers and discuss an automorphism which fuses some of the solutions. 

In Section 8 we discuss fields of characteristic prime to IL(2, 13)1. In Sections 3 

through 7 we are concerned with results over C which we use in Section 8 with 

other fields. During the work over C, we use reduction mod 79 for certain 79-local 

integers as a tool to infer results over C. 

We thank Michael Aschbacher for helpful discussions throughout the work. 

2. Frobenius groups of  order 13 .6  in /~  

We work extensively with a 27-dimensional vector space over a field, k, of char- 

acteristic prime to ]L(2, 13)1 containing primitive third and thirteenth roots of 

unity on which Ee acts. Let K be the vector space whose vectors are the triples 
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(xl ,x2,x3) of 3 by 3 matrices xl (i = 1,2,3), where addition and scalar multi- 

plication are defined coordinatewise, and equip K with the cubic form {.) given 

by 

{x) = det X 1 "4- det x2 + det x3 - trace xlx2x3 

for x = (xl, x2, x3) in K. The symmetric trilinear form corresponding to {.} will 

be denoted by (-,-,-). Thus, 

( x , y , z )  = ( x + u + z )  - - - ( u + z ) + ( x ) + ( u ) + ( z )  

for x ,y , z  E K. It is well known that ant K (i.e., the group of linear trans- 

formations of K preserving {.)) is the nonsplit central extension/~ of E6(k) by 

a group of order three. We shall also write E~(k) instead of /~  to denote the 

dependency on k. In fact, for an arbitrary ring R, we shall also write/~'8(R) to 

denote the subgroup of GL(R 2T) stabilizing (-), thereby interpreting R ~T as the 

free R-module generated by the natural basis consisting of all triples of matrices 

e~, k (1 < i , j , k  < 3) having 0 at every entry but for the (j ,k)-entry of the i-th 

matrix, which entry equals 1. 

This description of the Lie group of type E6 was first given by [Freu], but other 

descriptions were known as early as 1901 by [Di]. 

There are two bases we will use for K. The first is the abovementioned basis 

e~, k (1 < i , j ,  k < 3). We shall also use the basis and trilinear form described in 

[AsI], 3.1. In particular, the 27-dimensional space K has a basis Xi, Xi,, Xjk, 

where 1 < i < 6, 1 < j < k < 6. For convenience, we shall adopt the conventions 

Xji = - X i j  ( i f j  > i )  and X- i  = - X i ,  X- i ,  = -X i , .  

The trilinear form is nonzero only for the triples X,, Xj, ,  Xij if i # j ;  and Xij, 
Xkt, Xmn where 

{ i , j , k , l ,m ,n}  = {1,2,3,4,5,6}. 

The values are all -4-1 as follows: (Xi,Xj,,Xij) = 1 if i < j .  To determine the 

sign of {Xo, Xkt, X , , , )  identify tim triple of (ordered) pairs {ij, kl, ran} in the 

triple below, 
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triples of pairs 

12 34 56 14 23 56 16 25 34 
12 35 64 14 25 63 16 23 45 
12 36 45 14 26 35 16 24 53 

13 24 65 15 26 43 
13 26 54 15 24 36 
13 25 46 15 23 64 

and then (Xij,Xkl, Xmn) = 1 if the triple of pairs is the same as in the table 

(up to an even number of inversions of pairs) and (Xij, Xki, Xmn) = - 1  if one or 

three of the pairs are inverted. 

These bases can be related schematically using the following diagram: 

(123) (,15161)(,, 56) 
I '  2' 31 , 42 52 62 , 51 - 5  64 . 
23 31 12 43 53 63 61 - 6  45 

Now i e j, k = Xy if V occurs in the j ,  k-entry of the i-th matrix of the diagram. 

We denote by H the subgroup of E consisting of all elements which are diagonal 

with respect to the standard basis e}, k (1 < i,j,k < 3). An arbitrary element 

h E H has the shape 

h ( a , 3 , 7 , 5 ,  e,~- ) = a - 1 3 - 1 7 - 1 g - 1  a - 1 7  a - i - 1 ~  , 

7 -I~-I 37 

( 7~5~-'e-1 fl'Y6e 7@ ) 
3 - 1 7 - 1 ~ - 1 e - 1  7 -1 , 3"~1.~1( , 

6-I~-1e-I 3~-1e - 

~--1~--1 a-l ~-l e-1 ~-1 

Here, each entry represents the scalar by which the corresponding basis element 

of K is multiplied in the action of h. In particular h(1 ,1 ,w,w,~,~) ,  with w a 

primitive cube root of unity represents a central element of/~ of order 3. 

It is easy to see that H is a maximal torus (that is, a connected abelian 

subgroup consisting of semisimple elements) of E whose eigenspaces are the 1- 

dimensional linear subspaces spanned by the standard basis e~, k (1 < i,j, k < 3). 
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Recall that the Borel subgroup of L(2, 13) is a Frobenius group of order 13.6.  

We first analyze the possibilities for Frobenius groups of order 13 • 6 in/~.  Let e 

be a fixed primitive 13-th root of 1. The element ~ = h(e 3, e 11 , e, e, e s , e 4) is an 

element of order 13 in E6(k). On the basis X i , X i , , X i j ,  this means ~ has the 

following eigenvalue pattern: 

Xs, X4 X34 

0 0 0 

Xl X2 X5 X6 X13 X23 X35 X36 

1 2 8 10 12 11 5 3 

X1, X2, Xs,' X6, X14 X24 X45 X46 

I0 II  4 6 3 2 9 7 

X3 X4, X12 X15 X16 X25 X26 X56 

4 9 1 8 6 7 5 12 

Here the integers below the Xi,  X f ,  Xij  are the powers of e to which Xi ,  X j , ,  Xij 

are multiplied under the action of 3. Thus, ~ has fixed space kX3, + kX4 + kX34, 

and each nontrivial eigenvalue occurs with multiplicity 2. 

Throughout the paper we assume familiarity with some of the geometry of K 

given by the trilinear form. In particular the Weyl group acts transitively on the 

projective points formed by the basis vectors in a rank three manner. Given any 

two points, there may or may not be another point for which the trilinear form 

is nonzero on the triple. If so there is a unique such point and the triple spans a 

special plane. The set {X3 , ,X4 ,Xs4}  fixed by ~ is such a triple. 

Consider the element t E GL(K)  determined by 

X4 ~ -X3, ~ X34 ~ X4 

X1 ~ X3 i--i. -X14 ~ X13 ~ - X 4 ,  i.-,, - X  1, i~. X I  

X2 ~ - X , 5  ~ X6, ~ X2s ~ -)(26 ~ -X4e ~ X2 

X5 ~ -X16  ~ X2, ~ - X s 5  ~ X25 ~ X~4 ~ )(5 

X6 b-~ -X12 ~-~ X5, H -X36 b-+ X56 b-4 -X45 ~ X6 

Thus tX13 = -X4 , ,  tX1, = -X1 ,  tX34 = X4. It is straightforward to check that 

preserves the trilinear form which shows (3, t )  is a subgroup of/~.  Moreover, 

~ - 1  = ~10, so (~ , t )  is a Frobenius subgroup of E of order 78. 
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The signs above have been determined so that the triples of basis vectors for 

which the form is q-1 are permuted with the signs preserved. It is sometimes easy 

to obtain permutations of the lines generated by the basis vectors which preserve 

the triples but not the signs. By considering representatives in GL(27, k), it can 

be shown there is an dement  in E which permutes the basis vectors of K in 

the same way. In the arguments below we obtain permutations which preserve 

the signs and infer without further mention that there is an element in E which 

permutes the subspaces in the same way. 

LEMMA 2.1: Suppose k is algebraically closed and B is a Frobenius group of  

order 39 in E'e(k) and suppose the dements of order 13 and 3 have the same 

distribution of eigenvalues as ~ and ~2, respectively, above. Then B is conjugate 

in F,6(k) to a subgroup of (~,~2,z) where z is the central scalar of order 3. Any 

extension to a Frobenius group of order 78 is conjugate to a subgroup of (~, 7, z). 

Proof: As B is supersolvable and consists of semisimple elements, it is conjugate 

in E to a subgoup of the normalizer of a torus (cf. [SpSt]). Assume B = (u, s) 

where u of order 13 is diagonal in the basis {Xi ,Xi , ,Xi j}  for K and suppose s 

of order three permutes this basis. In the case of a Frobenius group of order 78 

let it be (u,t)  with s = t 2, j = t 3. We will prove the lemma in a series of steps. 

A .  THE FIXED VECTORS OF tt SPAN A SPECIAL PLANE. In  this and the next 

section we consider the basis vectors to be projective points and consider the 

permutation action of s on these points. The fixed space of u has dimension 3 

and so s (satisfying dim (CK(s)) = 9 by hypothesis) must permute the three basis 

vectors fixed by u. The points of a 3-cycle of s either span a special plane or no 

two of its points are in a special plane. To see this note that if {X, sX}  is in a 

special plane, then so are {sX, s2X} and {s2X, X}.  But given two basis vectors 

in a special plane, there is a unique third basis vector in the plane with both, and 

so {X, sX, s2X} spans a special plane. This follows for example because of the 

rank three action of the Weyl group on the 27 points. In particular each point is 

in five special planes. The ones for X1 are { X l , X i , , X l i }  for 2 < i < 6. None of 

the points in a special plane with Xi, are in a special plane with X1 except Xti  

and so the cycle spans a special plane. 

The permutation action of the Weyl group is transitive on triples of points 

which span a special plane and trmlsitive on the triples whose pairs are not 

in a special plane; the latter triples span a singular plane. A representative 
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which spans a special plane is {Xs,, X4, X34}. A representative of a triple from 

a singular plane is {X1, X~, )(3 }. 

The fixed basis vectors of u are a 3-cycle of s. Suppose they are not in a special 

plane. After conjugation we can assume they are {X1,X2,Xs). Let e i be the 

eigenvalue of )(4,. Let e j be the eigenvalue for X14. Then 

1 = ( X 1 , X 4 , , X 1 4 )  = ( u X l , u X 4 , , l t X l 4 )  ~- ~i~j. 

Consequently X14 has eigenvalue e - i .  Similarly X24 and X34 have eigenvalue 

e - i .  However, there are only two eigenvalues e - i  for the action of u on K.  Here 

i # 0 as the three eigenvectors with eigenvalue 1 are Xi ,  X2 and )(3. This shows 

the fixed vectors of u span a special plane. 

As the triples which span a special plane are conjugate in W(E6), we may 

assume u fixes some specific special plane which we assume to be X3,,X4,X34. 
The remaining 24 basis vectors for K are divided into three disjoint sets of eight 

according to whether they lie on a special plane with X3,, X4, or X34. The action 

of s permutes these sets of eight. The sets of eight are listed in separate rows in 

the listing of ~ appearing above. The eight corresponding to X3, are first, the 

eight corresponding to )(4 second, and the eight corresponding to X34 third. 

The centralizer of X3,, X34,)(4 in W(E6) (isomorphic to W(D4)) is transitive 

on any of these sets of eight. Each element in each set of eight is paired with the 

unique other element with which it forms a special plane. For example the pairs 

for the first row are {X1,XI3}, {X2,X23}, {Xh,X35}, {X6,X3s}. These all form 

a special plane with X~. The automorphisms of W(E6) which fix X3,,X34,X4 
act transitively on the four pairs connected to any given point. The kernel of this 

action interchanges the elements in an even number of pairs and the kernel of 

both actions is the identity. By taking a power if necessary we may assume that  

X3, ~ Xa ~-* )/34. As explained above, we are not concerned with signs here. 

By taking an appropriate power of u we can assume the eigenvalue associated 

with u acting on X1 is e, a primitive 13-th root of 1. We can assume 

• 5 U ~  2 ~ U 3 o r  $ u . ~  2 ~ -  u 9 .  

B. THE 3-CYCLES OF s ON THE BASIS VECTORS ALL SPAN SPECIAL PLANES. 

Recall s normalizes the clement u of order 13 with trace 1. There are two classes 

of elements of order three in W(E6) which act fixed point freely on the 27 points. 
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They are denoted by 3AB and 3D in [Atlas]. For the former, the 3-cycles all span 

special planes; for the latter, three 3-cycles span special planes and six do not. 

Let D be the stabilizer in W(E6) of X3,,X4,X34. Suppose the points in some 

3-cycle of s do not span a special plane. As D is transitive on the sets of eight 

above, we can assume X1 is the element from its row. Recall from above this 

means no two points of its orbit axe in a special plane. Its image must be in the 

second row as X~, is taken to X4. The only elements in this row not in a special 

plane with Xl are XI,, X24, X4s, X46 and so its image must be one of these. Now 

by transitivity of Dx~ on Xl,,X24,X45,X46, we can assume X1 ~ X1,. The 

only possibilities for the image of XI, are X25,X26, and X56. By transitivity of 

DxI,xt, on X25,X26,Xse, we can assume Xv ~ X2s, and so X2s ~ X1. 

Because three of the 3-cycles span special planes and Xs,,X4,Xs4 is one of 

them, the remaining two must include X2, X5 or X6 together with its paired 

entry in the same row. There is an involution in Dx~,xt,,x2s interchanging )(2 

and )(5 and so we may assume the 3-cycle containing )(2 does not span a special 

plane. The possible images of X2 are X2,,X45,X46. Recall X13 is paired with 

X1 and so its image is X14. But now the image of the special plane spanned by 

XI,, X2, X12 must be a special plane and so the image of )(2 must be in a special 

plane with X2s. This means X~ cannot map to X2s. Similarly using the special 

plane spanned by X25, X2, Xs, it cannot map to X46. Consequently X2 ~ X2,. 

We consider the case 

,9U8 2 = U 3 

first. So fax we know X1 ~-* X,, ~-} X25 and X2 ~-* )(2,. Now {X1,,X2,X,2} ~-* 

{X25,X2,,Xs} and so X12 ~ .t"5. But now X1,X2,,X12 ~ XI, ,Xls,X5 and so 

X2, ~ X15. Suppose the power of e for which X2 is an eigenvalue under u is j ,  

that  for X5 is k, and for X3 is L As we are assuming 

t t~t 2 ~ U3~ 

the powers of e for X1,X1,,X25 are 1,3,9 and for X2,X2,,Xls are j,3j,9j.  As 

X3, X2,, )(23 spans a special plane, the product of the eigenvalues must be 1 and 

so the value for X23 is - ~  - 3j. Using the triples X3,,X2,X2s we see the value 

for X2s is - j .  Similarly the value for Xls is - 1 .  Now ~ + 3j - j -- 0 and so 

= - 2 j ( m o d  13). 
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Using X 3 , X 1 , , X 1 3 ,  the same argument shows that  g + 3 - 1 = 0 and so j = 1. 

Now the triple Xs, .7(2,, X25 gives 3 + k + 9 = 0 and so k = 1 also. Thus, we have 

3 eigenvalues e for u, which is one too many. The case 

3"U82 ~ I/9 

gives the same contradiction using the same triples. The only difference is in the 

eigenvalues under u for images by s. This shows all 3-cycles of s on basis vectors 

span special planes. 

C. UNIQUENESS OF u. The possible s-images of X1 are X2,,Xs,,Xs,,Xa4 and 

by conjugating we may assume X1 ~ X14. This forces 

X 1 ~-4 X14 ~ 2 4, and  X,3 ~ X l '  ~ X3. 

Recall that  the eigenvalue of u acting on X 1 is e. The possible images of X2 are 

Xs,,X6,,X24. If )£2 ~ )£24, then X24 ~ X4, which is impossible as X14 ~ )£4,. 

Consequently X2 ~ )(5, or )(2 ~ Xe,. We may fix Xi,Xi, ,Xij  with i , j  < 4 and 

interchange Xs, with Xe, in W(E6). Consequently we may assume X2 ~ X6,. 

The remaining values can now be filled in after assuming the eigenvalue of u 

acting on X2 is e/. Assume 

8U8 2 ~ U 3. 

Then 
U = h(e 1+i, e 2+11i, e 10+2i, e 3+12i, e 11+5i, e12+9i). 

Written out on the basis vectors this gives for u: 

X3' X4 X34 

0 0 0 

X1 X2 X5 X6 Xl s  X23 X35 X36 

1 i 3 + 9i 4 + 3i 12 - i  10 + 4i 9 + 10i 

X v  X2, Xs, X6, X14 X~4 X45 X4~ 

I0 9 + i 12 + i 3i 3 4 + 12i 1 + 4i -3i 

Xs X4, X,2 X,5 Xae X25 X28 Xs6 

4 9 3+12/ 4i 12+I0/ I+3 i  9i 10+i 

Again the integers below the Xi, X f ,  Xij are the powers of e to which Xi, X f ,  

Xij are multiplied under the action of u where e is a fixed 13-th root of 1. To 
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see, for instance, how the 12 + 10i below X16 was determined, note the triple 

X1, X6,, Xle spans a special plane and so the eigenvalue for X16 is e 12+1°I as the 

eigenvalue for X1 is e, that for X6, is e si and the product of the eigenvalues is 1. 

By routine checking of values it is found that the values i = 2, 5, 6, 8, 9, 10 all 

give the correct eigenvalues. The other values for i do not. In each case the 

eight values in a given row are distinct and so s is the permutation moving the 

entry associated with t to the entry associated to 3~ in the row below (or the top 

row for images of the bottom row). In each case, s is uniquely determined as a 

permutation. 

We could have arranged the vectors as follows: 

X3, X4 X34 
0 0 0 

Xl 23 X14 X13 X4' Xl' 
1 4 3 12 9 I0 

X2 X,5 Xe, X23 X26 X48 

2 8 6 11 5 7 

)(5 Xle X2, Xs5 X25 X24 

8 6 11 5 7 2 

Xe X,2 Xs, Xse Xse X45 
10 1 4 3 12 9 

An easy check shows that permuting the three bottom rows cyclically is an el- 

ement of E6(k) which commutes with s. The first entries of the bot tom three 

rows are either {2, 8,10} if i is chosen to be one of these or {5, 9, 6} if i is chosen 

to be 5, 9, or 6. After permuting the rows cyclically we can assume the value for 

i is 2 or 9. 

If i = 2 the values are those of ~ and so u = 3. The 3-cycle is completely 

determined as above. The involution j is uniquely determined because it must 

move each element to the element in the same row with the inverse eigenvalue 

and it must fix the three points fixed by u. For example X1 must be moved to 

Xls and X2 must be moved to X~s. In this case, s is 3 2 and j is 3 3. 

If the value for i is 9, the linear transformation of K specified by 

X4 ~ X31 ~ X34 
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XI ~ X,5 ~ X24 ~ Xla ~ X26 ~ X2, 

X2 ~ X~5 ~ X,4 ~ X2s ~ X,6 ~ X,,  

X3 ~---~ X6, ~--4 X5 ~--~ X4, s---~ X46 t---~ X35 

Xs,  ~ X36 ~ X56 ~ X45 ~ X6 ~ X12 

is in E6(k), centralizes s, and, after conjugating and taking powers, results in 

i = 2. This completes the proof in the case sus ~ = u 3. 

The following element j '  is in E'6(k) and inverts s. 

(X3,)(X4, )(34 )(X, )(X, 3 )(X~, X~  )(X~, X~6 )(X~, X~  )(X,,, )(3 )(X~,, Xl~ ) 

The element ul = j ' u j '  is normalized by s and satisfies suls  2 = u~. This shows 

that  the solutions satisfying this condition are conjugate to those above. 

We have now determined s as a permutation.  Suppose s and s '  are two elements 

of order three in /~ with the same permutat ion action. Clearly s~s -1 = h is in the 

torus. The centralizer of s in the torus is finite as there are nine special planes 

permuted and the common eigenvalue on any one must be a cube root of unity. 

The torus is connected and so by Lang's theorem, s and s ~ are conjugate by an 

element of the torus. 

The proof of Lemma 2.1 is complete. | 

3. M a i n  t h e o r e m  

In sections three to seven we use the complex numbers. 

THEOREM 3 . h  Let ~ and t be as above with k the complex numbers. 

(i) There is one conjugacy class of subgroups isomorphic to L(2, 13) in/~6(C) 

with character 13 + 14. Each member  of this class can be realized within 

a G2. There are exactly two such subgroups in E6(C) containing (K,{). 

These are fused under an element in/~6(C) normalizing (~, { ). 

(ii) There is a unique class of subgroups isomorphic to L(2, 13) in/~6(C) with 

character 1+12+14 .  /n particular, there is a unique class of such subgroups 

isomorphic to L(2, 13) in F4(C) with character 12 + 14 on a 26-dimensional 

irreducible module for F4. The three algebraic conjugates of the character 



56 D. WALES AND A. COHEN Isr. J. Math. 

of  degree 12 give three embeddings conjugate under a field automorphism. 

Each of these embeddings extends to PGL(2,13). 

Proof: We know (cf. [CW92]) that there is a G2 in E6 and that there is an 

L(2,13) in G2 (cf. [CWS3]). The character of such an L(2,13) is 13 + 14. 

Suppose L is a subgroup of E6(C) isomorphic to L(2, 13). Suppose the char- 

acter of L acting on K is either 13 + 14 or 1 + 12 + 14. By Lemma 2.1 we may 

assume L contains (~, ~). 

We will establish a series of equations which must be satisfied for L to exist 

with either of the characters and show there are only two possibilities for the 

13 + 14 character and one for the 1 + 12 + 14 character. Furthermore, we find 

an element normalizing (~, t )  which fuses the two 13 + I4 solutions. Because of 

the existence of G~(C) as a subgroup of E'~(C) we infer the L(2, 13) in G2(C) 

corresponds to the unique solution. We construct a solution for the 1 + 12 + 14 

character over GF(793) and use lifting arguments to infer an embedding over C. 

We do this in a series of sections in which we find out more and more about the 

possible action of such an L(2,13) on K. 

We shall denote the morphism L(2, 13) --* E with image L by z ~ Y (z E L). 

In particular, in terms of the presentation L(2, 13) = (u, t, w ) where in matrix 

form the elements u, t, w are 

we have already determined the images ~ and t of u and t, and are out to 

determine ~.  

We shall identify subgroups of /~  generated by elements ~, t, ~ as being iso- 

morphic to L(2,13) by use of the presentation: 

~ = ( ~ ) 3  = / ,  ~ = i5, ~ 2 ~  = i~n ~ .  

4. The fourteen-dimensional invariant subspace V 

We begin by finding as much as we can about the action of L on the 14- 

dimensional L-invariant subspace V of K,  for which G restricted to V has char- 

acter 14. 
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Let w be a cube root of unity and let ~ be the linear representation of B = (u, t) 

given by ~( t )  = w and 9(u)  = 1. Then L(2,13) restricted to Y is the induced 

character from B to L(2,13) of ~0. 

There are two bases for V on which the action of G can be conveniently de- 

scribed. Let woo, w0, wl, w2 , . . . ,  w12 be a basis for the monomial action on V for 

which wx corresponds to the projective point x over 7./13. The actions are as 

follows, where the numerical subscripts are taken modulo 13: 

UWoo -~ Woo~ ~Wi : Wi+l~ 

~Woo = tOWoo~ ~Wi ~ O)2WlOi~ 

W-'-Woo = WO~ WWo ~ Woo~ WW21 = 032iw_2-i.  

Let voo,vo,v l , . . .  ,v12 be a second base for V given by 

12 

Ooo = Woo~ Vi -~ E e - J i w j  

for 0 < i < 12. In this base 

j=0 

~Voo ~ ~ o o ~  ~ i  ~--- ~2V4i~ 

12 12 
1 1 

l=O t=O 

where, writing u*(2 k mod 13) = w2k, we have 

12 
ali -'~ E u * ( J ) ~ - i J - ' J - l "  

j=l  

The fixed space of ~ on K is CX4 + CX3, + CX34. The fixed space of ~ Iv has 

dimension 2 and is spanned by voo and vo. Within CX4 + CXs, + CXs4 there is 

a unique 1-dimensional subspace of eigenvectors for t with eigenvalue w 2 and so 

v0 is a multiple of X4 - wX3, + 0~2X34 (a vector spanning this 1-space). Similarly 

voo is a multiple of X4 - w2X3 , + wX34. If L has character 1 + 12 + 14, the vector 

= X4 - X3, + X34 must be the fixed vector. V, 
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We know that  vo is a multiple of )(4 - wXa, + 0.)2X34 and so we may  take vo 

to be )/'4 - wXs ,  + w2Xs4. We may  now take A(X4  - w2X3, + wXs4) to be v~o 

with A a scalar. Clearly A ~ 0. The vector vl in V is in the e eigenspace of 

and we may  choose vl = B X 1  - CX12. The vector v2 is in the e ~ eigenspace 

of ~ and we may  choose v2 = F X 2  + GX24. With  these choices, the vectors 

v i , i  ~ O, are determined as they are of the form tJv  1 or tJv2. For example, 

v4 = wtv l  = w ( t B X 1  - t C X 1 2 )  = w B X s  + w C X s , .  We tabulate  these in Table I. 

Table I 

Voo = A ( X 4  - -  032X3 ' + (MX34) ~)7 = -w2-h"X46 + w2GX25 

Vo = X 4 - w X y  + w 2 X s 4  vs = - w F X , 5  + w G X 5  

vl = B X ,  - C X 1 2  v9 = - w B X 4 ,  - w C X 4 5  

v2 = F X 2  + GX24 Vlo = - w 2  B X 1  , + w 2 C X e  

va = - w 2 B X l 4  - -  w2CX36 1111 = F X 2 s  + GX2,  

v4 = w B X s  + w C X s ,  vl~ = B X l a  + C X s e  

' X4 X3, "3 t- X34 v5 -= - w F X 2 e  - wGX35 v .  = - 

v~ = w 2 F X s ,  - w2GX16 

There are several calculations which can be checked quickly using the trilinear 

form. For example 

(v2, va, vs ) = ( F X 2  + GX24, - w  2 B X , 4  - w 2 C Xa6, - w F X 1 5  + w G X 5 )  = G C  F. 

These are as follows: 

T a b l e  I . a  

(v~,v,,v12) = -(w2B2 + w C 2 ) A  (v,,v3,v9) = B 3 - C 3 

(Vo,V,,V,2) = - (wB  2 +w2C 2) (v2,v6,vs) -- -G 3 - F  3 

( v o o , v z , v n )  = - ( G  2 + w 2 F 2 ) A  (voo, v,,o,voo) = 6A s 

= - ( a  2+ f = 6 

(Vl,V2,V,o) = - w 2 B C F  (voo,vt.,vo) = - 3 A  

! V (v2 ,va ,vs )  a C E  <v, ,v , ,  ,2) = - (  B2 + C  2) 

(vi ,v6,v~> = - 2 w B F G  (v~. ,v2 ,vn)  = - ( G  2 + F 2) 

; I I 73! "~ (U1, Vl, Vll ) = - 2 B C G  i v . , v . ,  .} = 6 

( v i , v j , v k ) = 0  if i + j + k • 0  rood 13 (counting cx~ and * as 0). 
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The  form evaluated on m a n y  triples can be seen to be  0 by direct calculation. 

Triples of vectors  which are eigenvectors for t or ~ can only have nonzero fo rm 

if the p roduc t  of  the eigenvalues is 1 as the form is invariant  under  ~ and  t. For 

instance (voo, voo, v'.) = 0. 

We now obta in  a series of equations by equat ing (va, v#, v.~) = (~va ,  ~v# ,  ~v-t) 

for judicious choices of  vectors v~, v~, v7 in V. As ~2 = I ,  this is commonly  done 

as 

These  are as follows: 

(~v,~, v#, %) = (v,~,~va, ~% ). 

(I) (~0, ~0, ~0) = ( ~ ,  ~ , ~ 0 ) ,  

(2) (~0, ~,, ~,~) = (v~, ~ , ,  ~,~),  

(3) ( w o , ~ , v , , )  = (,,~, wv~, ~, , , , ) ,  

(4) (~0, ~,  ~) = ( ~ ,  ~ ,  ~ ) ,  

(5) (wo, ~+,,,~) = ( , ,~ ,  w,,~, w,,d, 

(6) (Wo, V2, rIO) : (P(x), W'02, W'010), 

(7) (WO, '01, '011 ) = (Vco, W'O1, W'Oll ), 

(8) (~o,,,~,,,~> = ( . ~ ,  w.~ , . , , ,~) ,  

(9) <,,,o, v~,,,~) = <v~, ~,,~, ~v.>. 

The  left hand  sides can be easily evaluated as w0 : (v0 -{- Vl + ' "  -{- v12)/13. In 

par t icular ,  for (1), we have 

12 
<wo,wo,,o) = ~ <v,,vi,~o)/13 ~ 

j,i=O 
12 

= E<v , ,v_ , , , ,o> /13~ 
/=0 

1 

-6  ~ 6 
= 132(wB +w2C 2+G 2+wF ~)+ 13- ~. 

As (voo, v~o, ~vo) = (voo, voo, voo) = 6A 3, equation (I) becomes after multiplying 
by 132 

(I') -6(wB 2 +w2C ~ + G 2 +wF 2) +6 = 132 .6A 3. 
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For the remaining equations, the left hand sides can be evaluated as follows: 

- -1  2 (2') (w°, v,, v,2) = ~ ( ~ B  + JC~) ,  
- 1  z 

(3') <w0,v2,v.) = ~ ( G  +~F~),  

(4') (wo, ~., 0.) = ±(B" - C3), 
13 
1 s 

(5') (Wo, vs, ,,,,+) = ~ ( - G  - F3), 

(6') (wo, v2, v,0) = -IBCFw2, 
13 

(7 9 (Wo,V,,,,,,) = ~3BCG, 

(8') (wo, vs, ve) = I~3BFGw, 

(9') (w0, vs, vs) = ~3GCF. 

The remaining right hand sides can be evaluated also but the terms are difficult 

to identify as they are sums of terms of the form e'cvJ, 0 < i < 12, 0 < j < 2. 

In general, we have 

1 
= ,.--~--o(V°°' ajkvj, aitvi) (v~,, w,,k, w,,t) (,,~, ,,~, ,,~) + ~ 

1 ~ ajkail(Voo,~3j,Vi)" = 6A s + ~ . 
J - ~  - -  I 

Each (v~,vj,vi) for j = - i  is either a multiple of (v~,v,,v12) = - (w 2 B 2 + 

wC2)A or a multiple of (voo, v2, v~)  = - ( G  2 + w2F2)A depending on whether vj 

is a t-image of a scalar multiple of vl or v2. For the remaining right hand sides 

we therefore have 

(voo, wv~, wvt) = 6A s + ak,t(~" B 2 + ~C2)A + ~k,t(G ~ + ~2F2)A, 
where 

5 
- 1  

ak,t = ~-~ ~ wh a4 h,k a-4s,,t, 
h=0 

5 
- 1  

~k,, = ~-~ ~ wh a2.4" ,k a -2 .4h , e -  

h=o 

The equations can be evaluated using the basis e'¢0~ of Q(Gw) over Q for 0 < 

i _< 11, 0 < j _< 1. These calculations are done using Mathematica, and checked 
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with Maple. Collecting in terms of this basis gives a method of determining when 

two expressions are equal. 

A miracle occurs with equations (7) and (8), in that their right hand sides turn 

out to be equal. Thus, 

In terms of left hand sides, this means - 2 6 B G ( C  - w F )  = 0, whence we have 

the three cases: 

C = wF, B = O, G = O. 

The coefficients after multiplying by 132 of the equations are all in Z[e, w] and can 

be reduced rood :P where ~ is a prime ideal in Z[e, w] for which 79 E ~ .  When this 

is done, w may be represented by 23, or 55 and e by 3 e, so ~ = (79, w - 2 3 ,  • -  18). 

The equations can all be reduced rood ~ by replacing w by 23 = 32e and e by 

18 = 3 e and collecting terms. We use the term "reducing rood 79" for this 

process. In the remaining sections we will solve sets of equations which have 

been reduced rood 79 and find they have unique solutions. We are interested in 

knowing they have unique solutions over C and our work will show this. We will 

reduce the existence of solutions to sets of equations to information about the 

rank of a certain matrix with coefficients in Z[e,w]. The rank over Z[e,w] is at 

least the rank over its reduction mod 79. Full rank or corank one mod 79 means 

at least full or corank one for the original matrix. The reduction rood 79 is done 

using Mathematica and the results are as follows. 

In V,  on the basis v l , . . . ,V l 2 ,Vo ,V~ ,  

'53 77 37 15 77 75 51 32 13 4 36 5 78 1~ 
48 35 17 22 62 38 71 60 48 40 4 5 24 1 
60 17 4 38 48 48 22 5 71 35 40 62 24 1 
29 25 36 61 67 38 33 66 13 34 33 62 56 1 
77 4 77 51 5 15 13 53 75 36 37 32 78 1 
66 36 33 38 29 13 61 62 33 25 34 67 56 1 

1 67 34 25 33 62 61 13 29 38 33 36 66 56 1 
~ = 1 - 3  32 37 36 75 53 13 15 5 51 77 4 77 78 1 

62 33 34 13 66 33 38 67 61 36 25 29 56 1 
62 40 35 71 5 22 48 48 38 4 17 60 24 1 
5 4 40 48 60 71 38 62 22 17 35 48 24 1 
5 36 4 13 32 51 75 77 15 37 77 53 78 1 

66 17 17 75 66 75 75 66 75 17 17 66 0 1 
13 13 13 13 13 13 13 13 13 13 13 13 13 0¢ 
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The equations rood 79 are 

(1) 73 + 66A 3 + 59B 2 + 14C 2 + 59F  2 + 6G 2 

(2) 66A 3 + 62B 2 + 3 3 A B  2 + 4C 2 + 77AC 2 + 3 2 A F  2 + 25AG 2 

(3) 66A 3 + 2 2 A B  2 + 2 5 A C  2 + 62F  2 + 4 8 A F  ~ + 13G 2 + 7TAG 2 

(4) 66A 3 + 2 2 A B  2 + 66B a + 2 5 A C  2 + 13C 3 + 5 9 A F  ~ + 14AG 2 

(5) 66A 3 + 6 A B  2 + 1 4 A C  2 + 3 2 A F  2 + 13F  3 + 25AG 2 + 13G 3 

(6) 66A 3 + 2 2 A B  2 + 2 5 A C  2 + 4 B C F  + 2 1 A F  2 + 9 A G  2 

(7) 66A 3 + 3 3 A B  2 + 7 7 A C  2 + 4 8 A F  2 + 77AG 2 + 2 6 B C G  

(8) 66A 3 + 3 3 A B  2 + 7 7 A C  ~ + 4 8 A F  ~ + 77AG ~ + 4 5 B F G  

(9) 66A 3 + 4 9 A B  2 + 9 A C  2 + 3 2 A F  ~ + 25AG 2 + 6 6 C F G  

The  argument  now breaks into three cases depending on whether  

B = 0, or  G = 0. We begin with the first case. 

CASE 1: 

become 

Isr. J. Math. 

= 0, 

0~ 

0, 

---- 0~ 

= 0 ~  

---- 0 r 

0, 

~ 0 .  

C ~ w E ,  

(C = w F ) .  If  we set C = w F  and collect terms, the equations m o d  79 

(1) 

(2) 
(3) 
(4) 
(s) 
(6) 
(7) 
(s) 
(9) 

73 + 66A 3 + 59B 2 + 39F  2 + 6G 2 = 0, 

66A 3 + 62B 2 + 3 3 A B  2 + 6 2 F  2 + A F  ~ + 2 5 A G  2 = O, 

66A 3 + 2 2 A B  2 + A F  2 + 62F  2 + 13G 2 + 77AG 2 = O, 

66A 3 + 2 2 A B  2 + 66B 3 + 1 2 A F  2 + 13F  3 + 14AG 2 = O, 

66A a + 6 A B  2 + 1 2 A F  2 + 13F 3 + 25AG 2 + 13G 3 = 0, 

66A ~ + 2 2 A B  2 + 5 3 A F  2 + 1 3 B F  2 + 9 A G  2 = O, 

66A 3 + 3 3 A B  2 + 1 7 A F  ~ + 77AG 2 + 4 5 B F G  = O, 

66A 3 + 3 3 A B  2 + 1 7 A F  2 + 77AG ~ + 4 5 B F G  = O, 

66A 3 + 4 9 A B  2 + 5 3 A F  2 + 25AG 2 + 17F2G = O. 

The first three equations give the matr ix  equation Z • Y = 0 where 

73 + 66A 3 59 39 6 / 
Z =  66A 3 6 2 + 3 3 A  6 2 + A  25A 

66A 3 22A 6 2 + A  1 3 + 7 7 A ]  
and 

(1) 
B 2 

Y = F 2 • 

G 2 
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Let Pi be the determinant of Z with column i deleted. Now if P1 ¢ 0, then Z 

has rank 3 and Y is proportional to ( P1, -P2 ,  P3, - P a  ) and so 

B 2 = - P 2 1 P 1 ,  F 2 = PalP1, G 2 = -P41P1.  

However, P1 = 61A(20 + A). If A = 0, then Z has rank 3 as P2 = 62. But now Y 

cannot be proportional to (P1, -P2 ,  P3, - P 4 )  as 1 ~ 0. This shows there 

is no solution to the equations if A = 0. (Of course over C we know A ¢ 0 by 

the geometry but we need to know rood 79 that  there is no solution with A -- 0 

because such a solution could correspond to a solution over C with A -= 0 (mod 

79).) If A = - 2 0 ,  the second and third equations become the same. 

Assuming A is not 0 or - 2 0  we use equations (4) to (9) to give further re- 

strictions. From equation (9), we have P166A 3 - 49AP2 -t- 53AP3 - 25AP4 = 

-17P3G.  Let L H S  be the left hand side of this equation. Then P I ( L H S )  2 = 

-(17)2(p3)2p4. Factoring the difference of the two sides using Mathemat ica  gives 

43(20 + A)a(49 + 38A + AZ)(56 + 16A + 64A 2 + A3) • 

(55 + 77A + 7 0 A  2 + 78A 3 + 69A a + 54A 5 + 31A 6 + Av). 

From equation (7), we have P166A 3 - 33AP2 + 17AP3 - 77AP4 = - 4 5 B F G P 1 .  

Again, if L H S  is the left hand side of this equation, we obtain P1 ( L H S )  2 = 

(45)2p2p3P4. Factoring the difference of the two sides gives 

73(6 + A)3(20 + A)3(31 + A)(59 + A)(56 + 16A + 64A 2 + A3) • 

(39 + 9A + 37A 2 + 15A 3 + 14A 4 + As). 

The root A = - 2 0  is common to both as is the cubic 5 6 + 1 6 A + 6 4 A  2 + A  a and no 

other factors are common. There are therefore two possibilities. Either A = - 2 0  

or A is a root of A a + 64A 2 + 16A + 56, an irreducible cubic over GF(79). 

The equations can now be solved when A = -20 .  We claim that  there are two 

solutions: 

(a)  A = - 2 0 ,  B = 51, F = 23, C = 55, G = 17; 

(b) A = -20 ,  B = 4, F = 23, C = 55, G = 39. 

As a start  to showing this and for later reference note that  34 times equation (1) 

minus 59 times equation (2) equals 2 + 33F 2, and so F 2 = 55, whence F = +23. 
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Solving for G 2 in terms of B 2 in equation (1) and substituting in equation (6) 

gives a quadratic with two roots, B = 51 and B = 4. Now G can be found 

from equation (9) and F from equation (4). We will show later that  these two 

solutions are fused under an automorphism. 

Recognizing that  w = 23 leads one to suspect that  F = +w could be a root of 

the corresponding equations over C. Note 34 = - 2  + 5w and 59 = 6w for later 

reference. For now note that  everything we have done could have been done over 

the complex numbers with at most this many  solutions. 

For the case A 3 = - ( 6 4 A  2 +16A+56)  we use the field GF(793). It  is convenient 

to take GF(793) isomorphic to Z / 7 9 [ X ] / ( X  3 +64X2 + 16X+56)  and take A to be 

the canonical image of X in the latter ring. The values A 3 in the equations can 

be replaced by - ( 6 4 A  2 + 16A + 56). The values for B 2, F 2, G ~ can be calculated 

from P1,P~,P3,P4 as above. Here P1 = 35+61A 2 and so p ~ l  = 6 9 + 8 A + 6 0 A  2. 

Now 

B 2 = 78 + 66A + 68A 2, F 2 = 23 + 34A + 16A 2, G 2 = 56 + 17A + 63A 2. 

The values of B and G can be found by substituting these values in equations 

(6) and (9). The value for F can then be found from equation (7). The values 

must  be checked in equations (4) and (5). The unique solution is 

A s = - ( 6 4 A  ~ + 16A + 56), F = - ( 5 5  + 75A), 
(c) B = - ( 6  + 7A + 3A2), C = wF, G = 14 + 69A + 7A 2. 

For these calculations one can check these really are square roots of the values 

given above and then checking signs is routine. It  is also routine to check that  

these values give solutions to all nine equations. This completes case 1 and we 

continue with cases 2 and 3. Note first that  over the complex numbers there will 

be no more solutions with these properties than we have found over GF(793). 

We will show in §7 that  the two solutions with A = - 2 0  are fused by an element 

in Ee. 

CASES 2 AND 3: (B  G = 0). The methods above can be used. The  equations 

if B = 0 are 

(1) 
(2) 
(3) 

73 + 66A 3 + 14C 2 + 59F 2 + 6G 2 = 0 ,  

66A 3 + 4C 2 + 77AC 2 + 3 2 A F  ~ + 25AG 2 = O, 

66A 3 + 25AC 2 + 62F 2 + 4 8 A F  ~ + 13G 2 + 77AG 2 = O, 
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(4) 
(5) 
(6) 
(7) 
(s) 
(9) 

E M B E D D I N G S  O F  L(2, 13) IN Ee 

66A 3 + 2 5 A C  ~ + 13C s + 5 9 A F  2 + 1 4 A G  2 = O, 

66A 3 + 14AC 2 + 32AF 2 + 13F 3 + 2 b A G  ~ + 13G 3 = 0, 

66A 3 + 2 5 A C  2 + 2 1 A F  2 + 9 A G  2 = O, 

66A 3 + 7 7 A C  2 + 4 8 A F  2 + 7 7 A G  2 = O, 

66A 3 + 7 7 A C  2 + 4 8 A F  2 + 7 7 A G  2 = O, 

66A s + 9 A C  2 + 3 2 A F  2 + 6 6 C F G  + 2 5 A G  2 = O. 

65 

For example in equations (1), (2), (3), (6), (7) with B = 0 only 1, C 2, F 2, G 2 

occur as coefficients. The matr ix  of coefficients is now a 5 × 4 matr ix  which must  

have rank at most  3. Factoring the determinants of the first four rows and the 

first three and the fifth gives two polynomials in A with just two common roots, 

0 and 20. If A = 0, equation (2) gives C -= 0 and then equations (,3) and (5) give 

F = G -- 0 but  now equation (1) is not satisfied. If  A = 20, the first 3 rows give 

unique values for C ~, F 2, G 2. The fourth using these values gives the value for 

C. Now equations (9) and (5) give the corresponding signs for G and F.  

The case G = 0 is similar and we omit details as we shall see later that  these 

two solutions are also fused by an element in E6. The two solutions are 

(d) A = 20, B = 0, C = -22 ,  F = + v ~ ,  G -- :FV~; 

(e) A = 20, B = C = -t-~/-L-~, F = -25 ,  G = 0. 

In conclusion, we have found five solutions, namely (a),...,(e) for the 14 di- 

mensional irreducible L(2,13)-submodule V of K over k = GF(793). The same 

arguments over the complex numbers give at most this number  of solutions. This 

is all we will say about  the action on the 14-dimensional space. We now must con- 

sider the two possibilities on the 13-dimensional complement. The possibilities 

there are 13 and 1 + 12. 

5. T h e  a c t i o n  o n  t h e  c o m p l e m e n t  in t h e  E6 case  

Let V' be the complement to V and assume the action of (3, t, ~ )  has the char- 

acter 13 which is the permutat ion character on the projective line minus the 

identity. If ' .. woo , w~, w~, .,w~2 are the permuted vectors, a basis for V'  is 

12 12 
! I 

i=0 j = 0  
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for 1 < i < 12. With this basis the action is as follows: 

where 

- -  t i t ~Ut. -----V.~ 
ttVi ~ ~ Vi~ t 

, , 
174i ~ = U.~ 

12 12 

w v , =  (-v" +14 <), + 
i=1  j = l  

12 

bji = E e-it-Jr-t" 
t = l  

t i s a  Now we shall identify V'  as an L-submodule of K.  We know that  v, 

' X 4 - X a ,  +X34. multiple of any vector fixed by ~ in W and so we can assume v, = 

Now vl is in the e eigenspace for ~ and so v~ = B'X1 - C'X13. We can also set 

v~ = F 'X2  + G'X24. The remaining v~ are images under t of v~ or v~. We tabulate  

these in Table II. 

T a b l e  I I  

v; = X4 - Xs,  + X34 

v~ = B ' X I  - C ' X 1 2  

v~ = F ' X 2  + G'X2~ 

v'3 = - B '  X14 - C '  X~e 

v'4 = B ' X 3 + C ' X s ,  

v [  = - F '  X2e  - G' X35 

v~ = F ' X e ,  - G ' X I s  

v~ = - F ' X 4 6  + G'X25 

v's = - F ' X 1 5  + G' X5 

v~ = - B ' X 4 ,  - CtX45 

V~o = - B ' X I ,  + C'X6 

v h = F ' X 2 3 + G ' X 2 ,  

v~2 = B'X13 + C'Xs~ 

The matr ix  for @ rood 79 on 

is 

1 
w = T ~  

the 13 dimensional space on the basis v l , . . . ,  v12', v.I 

,33 42 65 33 
42 33 12 51 
65 12 31 61 
33 51 61 65 
70 21 42 2 
12 61 70 54 
2 33 51 42 

51 65 54 12 
31 70 33 21 
21 2 33 33 
54 31 2 70 
61 54 21 31 
0 0 0 0 

70 12 2 51 31 21 54 61 14~ 
21 61 33 65 70 2 31 54 14 
42 70 51 54 33 33 2 21 14 
2 54 42 12 21 33 70 31 14 

61 33 31 33 12 54 65 51 14 
33 21 65 31 42 51 33 2 14 
31 65 21 33 54 70 61 12 14 
33 31 33 61 2 42 21 70 14 
12 42 54 2 65 61 51 33 14 
54 51 70 42 61 31 12 65 14 
65 33 61 21 51 12 33 42 14 
51 2 12 70 33 65 42 33 14 
0 0 0 0 0 0 0 0 7 



Vol. 82, 1993 E M B E D D I N G S O F  L(2,13) IN E6 67 

Here and elsewhere we always check that the matrices satisfy the defining rela- 

tions for L(2, 13) as given in §3. 

There are now several equations which must be satisfied similar to the ones for 

V. By taking two vectors from V and one from V' the terms are linear in B',  

C', F ' ,  G'. 

We begin with (v ' ,  voo, w0). It is often convenient to act by 13~ rather than 

with E. It is straightforward from the definitions that 

132(v:,voo,wo) =132(v~,voo,vo/13)=-39.A. 

If we let S be the squares mod 13, we also have 

12 12 

i=1 i=0 

12 

= (--v',,vo, v~)q- 14E(v~,v- i ,v~)  
i=1 

----" 3 A  n t" 14 E(V~,V-- i ,Voo) "4- 14 E(V~,V_i,?3oo) 
ieS i~S 

= 3A - 14 .6(w2BB ' + wCC')A - 14 .6 (GG'  + w2FF')A 

and so equating these gives 

(1o) 0 = 42A - 84A(w2BB ' + wCC' + GG' + w2FF'). 

Now 132 (~voo, v~, vk) = 132(w0, v~, vk) = 13(v-i-k, v~, vk) and 

12 12 

(v~,13~v~,13~vk) = (v~,v', + E bjiv~,13v~ + E ajtvj) 
j=l j=O 

I = (voo, v'., vo)ako + E ( v o o ,  v t, v-t>ak,-tbit 
tES 

+ 
tf.s 

= -3Aa~o + (-A)(BB'~o ~ + CC'~o) ~ a-t,~bti 
tES 

+ ( - a ) ( a a '  + FF'  
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By equating the values 132(~voo, v~, vk) and (voo, 13~v~, 13~vk) for various values 

of i and k, we obtain more equations. We compute (v-i-k, v~, vk) for several 

values of i and k using the relations from the previous section: 

(11) (vo ,v~,v12)  = 

(12)  (,,o, = 

(13) = 

(14) (v~, v3, vg) = 

( 1 5 )  = 

(16)  ( , 4 , , , , , , , 1 , )  = 

(17)  ( , 4 , , ' 3 , " , )  = 

(18) (t)I, 1)2, ~)10) = 

Suppose first that solution (a) of §4 is 

F = 23, G = 17. The equations become 

(I0) I + 78B' + 77F' + 77C' + 45G' = 0, 

(II) I0 + 74B' + 70F' + 48C' + 5G' = 0, 

(12) 72 + 15B' + 77F' + 30C' + 40G' = 0, 

(13) 76 + 35B' + 30F' + 35C' + 36G' = 0, 

(14) 72 + 23B' + 42F' + 31C' + 3G' = 0, 

(15) 76 + 9B' + 2F' + 18C' + 10G' = 0, 

(16) I0 + 31B' + 47F' + 58C' + 9G' = 0, 

(17) 72 + 66B' + 67F' + 53C' + 20G' = O, 

(18) 72 + 15B' + 69F' + 61C' + 67G' = 0. 

This is equivalent to the matrix equation X • Z = 0 where 

72 
76 

X =  72 
76 
10 
72 
72 

78 77 77 45~ 
74 70 48 5 
15 77 30 40 
35 30 35 36 
23 42 31 3 
9 2 18 10 
31 47 58 9 
66 67 53 20 
15 69 61 67, 

-(wBB' + w2CC'), 

-GG' - w F F', 

-2wB'FG, 

B, B 2 _ C'C 2, 

_G'G 2 _ F'F 2, 

-B'CG - C'BG, 

G' C F, 

-w2 BC' F. 

at hand; that is, A = -20 ,  B = 51, C = 55, 

and Z = 

(i) 
B' 
F f . 

C' 
G' 



Vol. 82, 1993 EMBEDDINGS OF L(2, 13) IN E6 69 

There is one solution B'  = - 5 ,  F '  = -25 ,  C '  = -14 ,  G'  = 35, which gives the 

solution 

B = 5 1 ,  F = 2 3 ,  B 1 = - 5 ,  C ' = - 1 4 ,  
(a.a) A = - 2 0 ,  

C = 5 5 ,  G = 1 7 ,  F ' = - 2 5 ,  G 1 = 3 5 .  

The solution (b) of §4 leads to the solution 

B = 4 ,  F = 2 3 ,  B 1 = - 3 5 ,  C ' = - 2 5 ,  
(b.a) A = -20 ,  

C = 5 5 ,  G = 3 9 ,  F 1 = - 1 4 ,  G 1 = 5 .  

As usual there are at most two solutions over C. 

There are two further possibilities when A = 20. The first is (d), where A = 20, 

B = 0, C = -22 ,  r = v~,  G = - v ~ .  Equations (10), (11), (12), (14), (17), (18) 

leaxt to the matr ix  equation X .  Z = 0 where 

17 21 

X = 12 76 
7 60 42 

37 28 37 
12 76 69 

F ' v f f J  " 
C ' ¢ ? /  

The third and bo t tom row show G'  = 0 but the bot tom left 3 × 3 submatr ix  is 

nonsingular and there is no solution. The second solution with A = 20 is (e), 

where G = 0, B = C = =t=v/'Z~, F = -25 .  Equations (12), (13), (15), (16), (18) 

can be used to show there is no solution. Consequently, there are no solutions 

over C. 

We shall also rule out a solution of equations (10) to (18) for the cubic case 

(e), where A 3 = 23 + 63A + 15A 2. The equations (10) to (14) have no solutions. 

Indeed the determinant of the matr ix  of coefficients for equations (10) to (14) is 

3 3 + 5 0 A + 7 7 A  2 and so is not 0. This shows there is no solution over GF(793) for 

this value of A. Again, the same is true over C. These arguments show part  (i) of 

Theorem 3.1 has been proved except for the statement about the automorphisms 

fusing the two subgroups. 

6. T h e  act ion  on the  complement  in the  F4 case 

We must also show that  there is one possibility for the F4 case in which the 

character on V I is 1 + 12. The fixed space for L would be Cvl. and so L is a 
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subgroup of the subgroup F of/~ fixing the vector v~,, which is isomorphic to F4, 

as (v~,) ¢ 0 (see Table I.a). In §4 we have seen that 

(v ' . , v , , v12)  = - B  2 - C 2 and ( v ' . , v 2 , v n )  = - a  2 - F 2. 

These lead to equations as follows. First, we have 

= = (v,, v=,  vo/13) = -3A/13 ,  

where the latter equality is again from the equations in Table I.a of §4. On the 

other hand, as 

( , , ' , , , , , , , _ , )  = q , , ' . , t , , , , t , , _ , )  = ( , , ' . , . ~ , , 4 , , , . ,~ , , -4 , )  = . , ( , , . ;  ,,~,, , , - 4 , )  

and ( ¢ ,  .0 , .0 )  = 0, we have 

(¢ . ,w0,w,)  = (¢., !1, v~, 
{=0 i=O 

12 

- - i g  

1 , , 1 , v * 
= i ~ ( v . , v l , v , , ) A ,  + i -~(v. ,v~,  ,,)A~, 

where A~ = e i + e - i  + /.,j2(~4i _1_ f--4i) _~_ tO(e3i + e--3i).  Hence, the identity 

(,,'., ,,,o, ,,,,) = (~,,'., ~,,,o, ~, , , , )  gives 

(19) (B 2 + C2)A; + (G 2 + F2)A; = 39. A. 

The corresponding equation for (vt., Wo, w2) gives 

(20) (B 2 + C2)A~ + w ( g  2 + F2)A; = 39. Aw ~. 

We show that  the values rood 79 do not satisfy this except for the case (c) of 

A a root of the cubic in GF(79a). 

The values mod 79 are as follows: 

w = 23, w 2 = 55, e = 18, A~ = 52, A~ = 8. 

For each of the four possible solutions (a), (b), (d), (e) for B ,  C,  F ,  G with 

A = 4-20, both sides of (19) and (20) can be evaluated and they never coincide. 
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For instance, in case (e),the left and right hand side of (19) and (20) differ by 

20 and 76, respectively. Consequently none of these can lead to embeddings of 

L(2, 13) in F4. 

Next suppose we are in the cubic case (c). Now B 2 + C 2 = 40A and G 2 + F 2 = 

51A, so (19) and (20) are satisfied. This shows these values could come from the 

' In order to show this is possible we find the action of subgroup F of ]~ fixing v.. 

3, t, ~ on the 12-dimensional complement V' to iV, v~.). We use the same vectors 

v~, v~ , . . . ,  v~2 as above (Table II), as these are the eigenvectors with eigenvalue 

e i (1 < i < 12) for ~. However, the vectors are determined up to a scalar so if 

one of B' ,  C',  F ' ,  G' is nonzero we can assume it is 1. 
t.t. As the actions of L(2,13) on V and V' N v. are irreducible and distinct, the 

L(2, 13) invariant pairing v' x v ~ (C., v', v) must be trivial, so (C., v', v) = 0 for 

v' E V' and v E V. We calculate exactly as above that 

(v~.,v~,v,2)=-(B'B+C'C) and (v'.,v~,v,,)=-(G'G+F'F). 

These  give two equations 

B'(6 + 7A + 3A 2) + C'(23)(55 + 75A) = 0, 

G'(14 + 69A + 7A 2) - F ' (55 + 75A) = 0. 

Noting that (55 + 75A) -1 = 27 + 70A + 23A 2, we find 

(21) C' = (33 + 72A + 7A2)B ' and F '  = (46 + 7A + 72A2)G '. 

Since vl and v~ are nonzero vectors, at least one of B' ,  C',  and at least one of 

F',  G' is not 0, so we can assume either B' or G* is 1. 

' '± is as follows: The action with respect to the basis (Vi)l<i<12 of V' N v, 

- -  t i t 

U~)i ~ ~ ~)i, 

--~ t~4i , 

12 

WT) i ---- C j i V  , 

where cji is defined using the field GF(13 2) (cf. [NaSh], §II.5.7). This field can 

be defined as {a + bv~ [ a, b E GF(13)}. The element q = 2 + v ~  is a primitive 
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dement  as (2 + v~)  '4 = (2 + V~)]3(2 + v/2) = (2 - v~)(2 + V~) = 2. Write 

s = ~ = 2 - v ~  and let ~ be a primitive 7-th root of unity. Then 

¢ j i  = - - - -  

An alternate definition is 

1 , 6 9  

13 ~ c k e - - i ( q k + s h ) "  
kffil 

2k tE~i-- I rood 13 

,EOF(ISg) 

p(a)x((ia + j a - ' ) ( - 1 ) )  

where p(t ~) = ~k and X(a) = ea if a E GF(13). Note that if a~ = ji  -1, then 

ia + ja -1 = ia + i~ = i(a + -d) E GF(13). 

We now use the equation (v~, voo, wo) = (~v[, ~voo, ~wo) = (~v[, wo, voo) to 

find the value for B'.  In fact 

12 

jffi0 

= 

{ (v[,voo,v]2) i f i E S  
= (v~,v~,,,vn) i f i  ~ S 

S -A(  °~2B'B + oJC'C) if i E S 
= ~ -A(G'G + w2F'F) if i ~ S. 

Here S is the set of nonzero squares in GF(13). We also have 

12 

w0,  oo) =13<   oo, 
k-~l 

\~Es I 

+ ( E  cj ,I  (-A)(G'G +co'F'F) 
\ i~s I 

= A( G' G + u~2 F' F) 

aS 

~-'~ cii 0 and ~ ]  = - I .  Cjl 
j e s  j~s 
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This gives the equation 

(22) - ( J  B°B + wC'C)  = (G'G + w2F'F) .  

The equation for (v~, voo, w0) is the same as 

E cj2 -I and 
jEs 

~-~ cj2 = O. 
j~s  

73 

= Z 
j=l 

A s / v '  v ° = w 2 Iv' v' x 4 i ,  -4i ,  voo) (v~,v~i,voo), as well as ~ 1, -1,voo) = - A (  w2B'2 + wC'2) 

and ~ 2, -2, voo~ = - A (  G'2 "f w2F'2),  this sum is 

"Y=( E C4J'1C-4i'12W2J) (w2B'2+wCt2)(-A) 
4$mod 13 

Solving (21) and (22) gives B' = G' = 1 and we have 

B '  = G '  = 1, C '  = 33 + 72A + 7A 2, F '  = 46 + 7A + 72A 2. 

Notice C t = - F  t. Incidentally, the full set of roots of X 3 + 64X 2 + 16X + 56 is 

A, 34 + 24A + 73A 2, 60 + 54A + 6A 2. 

We have one more  hurdle to overcome and for this we use the equat ion 

The left hand side evaluates as 

t t 1 ,2 (vl,Vl2,Wo)=---~(wS + w2Ct2). 

The right hand side evaluates as 

12 12 

(W'-"~' WWI2' ~)°°) ~--- ( E Cj, l}~, E Cj"21}~ 'v°°) 

12 
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Straightforward computations show 

w 2 B  '2 + w C  '2 = 18 + 25A + 28A 2, 

w 2 F  12 + G '2 = 19 + 22A + 12A 2. 

In order to evaluate the above sums, we need a value for (i + ¢-i.  The choice 

of this value is related to the choice of algebraic conjugate from the three 12 

dimensional representations of L(2,13). There are three roots ia GF(79 s) to 

p ( X )  = X 3 + X 2 - 2 X  - 1, the minimal polynomial of ¢i + ¢-i.  It is found by 

searching that the roots are 15 + 40A + 47A 2, 32 + 72A + 7A 2 and 31 + 46A + 

25A 2, where in fact 32 + 72A + 7A 2 = (15 + 40A + 47A2) vg. Each of the three 

different (but algebraically conjugate) 12 dimensional representations of L(2, 13) 

over Z/79[A] is obtained by identifying ~1 + ~-1 with one of these roots. 

First, suppose ~1 + ¢-1 = 32 + 72A + 7A 2. There are no terms ~1 + ¢-1 in 

(cij)1<i,1<12. Setting 

~2 + ~5 = 31 +46A +25A2 and ~a + ~4 = 15 +40A +47A2, 

and substituting these values into cji turns ~ into a matrix of order two. Now, 

C4J,lC_4J,12~,g 2j = 6 + 58A + 64A 2, 
4Jmod 13 

2i 14 + 13A + 44A 2. E ¢2.4J ,1C_2.4J ,12~) ---~ 
2.4J mod 13 

Reversing these gives an element not of order two and so the choices above are 

the correct ones for the representation of L(2, 13) in V'. However, substituting 

the values for these sums in the equations above gives 7 = 22 + 54A + 69A 2 but 

_T~(wD1 .r,,2 + w2C,2)  = 9 + 53A + 72A 2. Consequently, this case is eliminated. 

Similarly, several other elements such as (v~, v~l , w0), <v~, v~, w0) also provide 

contradictions. 

Similarly, the case where ~1 + ~-1 = 15 + 40A + 47A 2 leads to a contradiction. 

Thus, we are left with 

~1 + ~-1 = 31 + 46A + 25A 2. 

Now the matrix (c i j ) i j  for ~ on the 12 dimensional subspace of V' with respect 
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to the basis v l , . . .  ,v~2 is 
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W-~- 

A1 A2 A3 A4 A5 
A2 A4 A6 As Alo 
As A6 A9 A12 A2 
A 4 A8 A12 A3 A7 
As Alo A2 Ar A12 
As A12 As A11 A4 
A 7 A1 AS A2 A9 
As A3 A11 A6 AI 
A9 As A1 AIO A6 
AIO A7 A4 A1 All 
All A9 A7 AS A3 
A12 All AIO A9 AS 

A6 A7 A8 A9 AIO All A12 
A12 A1 A3 A5 A7 A9 All 
AS AS All A1 A4 A7 AIO 
All A2 A6 AIO A1 A5 A9 
A4 A9 A1 A6 AH As A8 
AlO A3 A9 A2 A8 ~1 A7 
A3 AIO A4 All A5 A12 A6 
A9 A 4 A12 A7 A2 AIO A5 
A2 All Ar As A12 As A4 
As A5 12 112 A9 As A3 
A1 Al2 -Alo As Ae A4 A2 
A7 A 6 A5 A4 A3 A2 A1 

where 
A1 = 3A + 38A 2 + 43, A7 = 62A + 76A 2 + 57, 

A~ = 50A + 2A 2 + 46, As = 16A + 6A 2 + 73, 

A3 =46A +4A 2, A9 =54A + 26A 2 + 35, 

A4 = 34A + 15A 2 + 46, Alo = 33A + 7A 2 + 28, 

A5 =39A + 29A 2 + 51, All =42A + 35A ~ + 29, 

A6 = 28A + IOA 2 + 59, A12 = 67A + 68A ~ + 6. 

A direct check using computer of (Wx, wy, wz) = (x, y, z) for all triples x, y, 

z from the basis vl,. • • ,v14, v~,.. . ,v12 ,~ v.~ shows that the resulting element 
I belongs to E, whence to F as it stabilizes v.. 

By construction of the representations 12 and 14, the elements t, u, w generate 

a subgroup of F isomorphic to L(2,13). From uniqueness up to conjugacy class 

of subgroups isomorphic to the Borel subgroup B of L(2, 13), cf. Lemma 2.1, 

and from uniqueness of ~ given solution (c) of §4, we infer that the subgroup is 

unique up to algebraic conjugacy (from the choice of A as a solution of the cubic 

X 3 + 64X 2 + 16X + 56). But changing to an algebraic conjugate changes the 

representation, hence uniqueness with given character. The arguments show the 

same is true over C. As 79 is prime to [L(2, 13)[, this representation can be lifted 

to C by arguments described in [CW92] or [CGL] and also in section eight below. 

This finishes the proof of part (ii) of Theorem 3.1 except for the statement about 

the extension to PGL(2,13). 
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7. The complex cases and the automorphism 

There is an element rn E ~' which squares to ~ and normalizes ~. The following 

element is such an element as a check will show. 

- -Xl  ~ X24 ~ --X3 ~ X5 ~ X14 ~ -X16  ~ - X 1 3  ~ XT' 

X4, ~ - X 3 5  ~ XI, ~ X25 ~ - X 1 ,  

X~ ~ Xs, ~ - X , 5  ~ - X 3 6  ~ X6, ~ Xss  ~ X23 ~ - X 4 5  

- X ~ s  ~-0 Xs  ~ - X 4 6  ~ - X , 2  ~ X2, 

X~ ~ X 3 4  ~ - X 3 ,  ~ X4. 

A check also shows m - l ~ m  = ~2. 

Of course m normalizes (~, t) and so under conjugation acts on subgroups 

containing (~,t). In the Ee case where the character is 13 + 14, there are exactly 

two L(2,13)s and so ra either fixes one of these L(2, 13)s or maps it to the other. 

However, m could not fix one as PGL(2, 13) is not contained in /~e(C) as an 

involution has the wrong trace (see [CW92]) and so ra interchanges the two. 

Consequently there is one conjugacy class of such L(2, 13)s in/~6(C). In the F4 

case where the character is 1 + 12 + 14, there is a unique L(2,13) and so m must 

normalize it. Consequently there is an embedding of PGL(2,13) in/~6(C) whose 

image is contained in a subgroup of type -P4. 
To check directly that the four possibilities (a), (b), (d), (e) for A, B, C, D, 

F ,  6 / a r e  fused in pairs to two solutions it is necessary to conjugate by m and 

evaluate the various constants using the construction above. As m2 = ~, we must 

check that my1 = wv] and ray2 = wv~ where vl, v2 are as above and v~, v~ are the 

corresponding vectors using ~'* and ~ra = ~ instead of ~ and t. Note ravi = wv~i. 

In particular 

m(51X~ - 55X,2) -- -51Xu4 + 55Xu = w(23X2 + 39X24), 

rn(-23to2X46 q-w217225) -- -23w2X,2 - to217Xl -- w(4X, - -  55212), 

22mX12 = -22)/ '2 : w( -25X2) ,  

- = J(v x,2 + v x,) = 4- i-6x, - 

This shows the two solutions with A = - 2 0  are fused as are the two solutions 

with A = 20. To check directly that m normalizes the/ ; (2 ,  13) it is sufficicient to 
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check that m preserves the invariant subspaces and this is equivalent to F = w2C,  

G = - w 2 B  and  G' = B I, F '  = - C  I and these all hold. 

By combining this with results from §§5 and 6 we conclude that Theorem 3.1 

has been proved. | 

We were able to find solutions over C of the equations with C = w F  using the 

same method as for GF(79). The two polynomials were difficult to factor and 

we thank R. Wilson for finding the relevant factors. Because the linear factor 

has multiplicity three, the linear factor is the greatest common divisor of the 

polynomial and its second derivative. The cubic is the GCD of the polynomials 

after the linear factor cubed has been removed. Another way of finding the cubic 

will be described below. The value for A in the linear term is an element in 

Q[e']-  e 12 n t- e 5 "4- eS,w]. If 

Ai = ~i _{._ ~-i  ..[_ ebi + e-5i ,  

= 1-~(f'dA1 "~-w2A2 "~-/~3). A 

This element A satisfies 132A 2 = - (4+3w) .  Setting A as this value, the equations 

have a manageable form. Keep in mind that C = w F .  

The equations (1) to (9) become 

(1) - 3 0  - 18w + 6B2w + 12F2w + 6G 2 = 0, 

(2) - 2 4  - 18w + B 2 ( - 2  + 5w) + F2(3 + 12w) + G2(7 + 2w) = 0, 

(3) - 2 4  - 18w + B 2 ( - 2  + 5w) + F2(3 + 12w) + G2(7 + 2w) = 0, 

(4)-24 - 18w + B 2 ( - 2  + 5w) + F2(3 - 14w) + G2(7 + 15w) - 13B 3 + 13F 3 = 0, 

(5) - 2 4  - 18w + B2( -15  - w) + F2(3 - 14w) + G2(7 + 2w) + 13F 3 + 13G 3 = 0, 

(6) - 2 4  - 18w + B 2 ( - 2  + 5w) + F 2 ( - 1 0  - w) + G2( -6  - l lw)  + 1 3 B F  2 = O, 

(7) - 2 4  - 18w + B 2 ( - 2  - 8w) + F2(16 + 12w) + G2( -6  + 2w) + 2 6 B F G w  = O, 

(8) - 2 4  - 18w + B 2 ( - 2  - 8w) + F2(16 + 12w) + G2( -6  + 2w) + 2 6 B F G w  = O, 

(9) - 2 4  - 18w + S 2 ( l l  + 5w) + F 2 ( - 1 0  - w) + G2(7 + 2w) - 1 3 F 2 G w  = O. 

As in the modular case the first equation times ( - 2 + 5 w )  is equal to the second 

equation times 6w and so F 2 = - ( 1  + w) = w 2 and so F = +co. Substituting 

the value for G 2 found from equation (1) into equation (4) gives the cubic B a + 
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w2B 2 + 4. The root B = -2w does not satisfy for example equation (9). The 

other two roots are w2(l ~- x/~"7)/2. 

The case F = -w has no solution. This can be shown by substituting the 

relations from equation (1) into equations (4) and (6). 

The solutions with F = w are 

B = lw2(1 + vfL--7), F = w, 1 
A = ~ ( ~ A 1  + ~2A2 + A3) ,  1 

C = w2, G = ~w( -1  + V-~) .  

The complementary equations are also manageable. The solutions are 

B ' =  F ' =  3vfL-~), 

T G' -- C ' =  

These were solved by finding a solution for the first four equations using cofactors 

and checking the solution worked for all of them. 

The solution for the cubic case can also be found using the method of §4 but 

can be simplified by using some extra conditions. The cubic itself over Q[w, e] 

has coefficients which are in Q[w, A~]. We denote this polynomial by h(A) .  It is 

h(A)  = - - 3 - 4 w T ( 4 + 2 w + ( 6 + 6 w ) A 2 + 6 A 4 ) A  

+ (--14 - 10w - (24 + 6w)A2 -- (18 + 24w)A4)A 2 + 169A 3. 

The norms of the coefficients of A ° and A 3 are 13 and 169. There are six algebraic 

conjugates of the equation. The product of them after dividing by 169 is 

#o + #aA a + PeA 6 + ~ugA 9 + P12 AI2 + P15 A15 ~- PlsA 18 

where 

# 0 = 1 3 ,  # 3 = 1 0 0 2 ,  #6=46527 ,  #9=270780,  

#12 = 102219818, #15 = 4836462618, #is = 131°- 

This is the minimal polynomial over Q. Notice this is a polynomial in A 3 of 

degree 6. The equations (1) to (9) can be simplified here because we know the 

solution is invariant under the automorphism m. This has the consequence that 

F -=- w2C,  G = - w 2 B  and G I = B ' ,  F '  = - C  I. Substituting these values gives 

equations in the unknowns A, B, C. Some of the equations become the same. In 
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particular the second and third, the fourth and fifth, the sixth and ninth, and the 

seventh and eighth axe all the same. Recall once we chose C = w F  the seventh 

and eighth were the same. Solving as in §4 is easier. The matrix Z from case 1 in 

§4 can be replaced by a 2 by 3 matrix. The polynomials from equations (7) and 

(9) are of degree twelve instead of fifteen and have the cubic as greatest common 

divisor which can be found using the Euclidean algorithm. 

However there is an easier way to solve this using the equation (19) or (20) 

from §6. With these simplifications these equations become 

(23) (B 2 + C2)(A~ +wA~) = 39-A.  

Equation (1 t) becomes 

(24) -12 (wB 2 +w2C 2) + 6  = 132 • 6A 3. 

Using these equations we can form the 2 by 3 matrix of coefficients as in §4 to 

obtain the matrix equation X • Y = 0 where 

( (1) X = 6 -  1014A s 12w 12w 2 B2 
- 3 9 A  A~ + wA; A~ + wA~ and Y = . 

C 2 

Let Ri be the determinant of X with column i deleted. 

As R1 ¢ 0, the matrix X has rank 2 and Y is proportional to (R1 , -R2 ,  R3, ) 

a n d  so 

B 2 = - R 2 / R 1 ,  C 2 = R3/R1.  

For purposes in the next section note the norm of R1 is 24. 33 • 13, a P local unit 

for all primes P not dividing [L(2, 13)[. We will also need to know that h(A) has 

no root in common with R2(A) or with R3(A) mod P for such a P.  For this we 

calculate the resultants of h(A) with R2(A) and R3(A) and find their norm is 

212 • 315 • 1313. This is done using the computer. The values for B 2 and C 2 axe 

each polynomials of degree 3 divided by R1. 

Now just as in §4, the remaining equations can be used to find the polynomial 

satisfied by A. Equation (2) gives a quartic equation in A. Then, equations (8) 

and (9) give polynomials which are of degree nine. The greatest common divisor 

of any two of these is h(A). After reducing mod 79 it is the cubic of §4 and so 
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is irreducible. The advantage to using this method is the Euclidean algorithm 

is implemented to find the greatest common divisor of a quartic and a ninth 

degree polynomial rather than two polynomials of degree twelve. As in §6, the 

, l =land equation (v., vl, v12) = - ( B ' B  + C'C) = 0 holds and so we can take B' 

C' = - B / C .  

The equation for h can be solved by Cardano's formulas. For this we calculate 

a square root of the discriminant is 105-42~ If ,~ is the coefficient of A ~ divided 13"-T9--" 
1 by the coefficient of A 3, the roots are ~(-A + toia + to-ib) for i = 0, 1, 2 and 

a =  (7896+11256w~1~ J , b=(525+1428to~½1~ J . 

The cube roots must be chosen appropriately. 

These remarks prove the following lemma. 

LEMMA 7.1: Suppose 0 is the ring of integers in an algebraic number field con- 

taining to and e and containing A in the 1 + 12 + 14 case. Let P be a prime idea/ 

of 0 satifying P N Z = (p) for an integral prime p other than {2, 3, 7, 13}. The 

representations obtained here of L(2, 13) and PGL(2,13) MI have coefficients in 

the P localization of O. 

8. R e s u l t s  for fields o f  n o n z e r o  character is t ic  

Our results over C have consequences in E6(k) for finite fields of characteristic p 

prime to IL(2,13)1. 

We first discuss some well known facts about lifting representations from char- 

acteristic p to characteristic 0. Suppose k is a finite field of characteristic p and 

suppose that L is a finite subgroup of E~(k) of order prime to p. Here k denotes 

the algebraic closure of k. Consider/~6(k) as a subgroup of GL(27, k). As L is 

finite, there is a suitable conjugate of the natural basis such that all matrix coef- 

ficients of elements of L are in some finite extension of GF(p), say k' = GF(p') .  

Now there is a number field £ for which the integers O in £ have the property 

that O/P  has order pS where P is a prime containing p in O. Now let Op be 

the completion of the P adic integers and £p the quotient field. As is well known 

k' ~ O / P  ~ Op/POp.  Reduction rood POp is a homomorphism from/'~s(Op) 

onto Ee(k') where k' is the quotient field Op/POp.  The map is onto as/~6(k') 

is generated by elements for which there are lifts in/~6(Op). For instance by 

[AsI 3.17], Ee(k') is generated by the Weyl group which can be chosen monomial 
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with coefficients 4-1 and a group L for which the coefficients are taken from k ~. 

For each of these elements there is an element of/~6(Op) which reduces to these 

rood POp. The elements X(t)  and X'( t )  in [AsI, 3.2] together with the Weyl 

group can also be used. There are also intermediate maps from Ee(Op/PnOp)  

onto E6(k'). Let Ln be the inverse image in E6(Op/P"Op)  of L. The kernel 

of the map from Ee(Op/P"Op)  to L'e(k') is a finite p-group as the same is true 

in GL(27,0p/PnOp) .  This means that ]Ln[ = fLip t for some t. By the Schur 

Zassenhaus theorem [Go], there is a subgroup in Ln isomorphic to L and all are 

conjugate. By taking corresponding subgroups L, for higher and higher powers 

of P,  there is a subgroup of E6(Op) isomorphic to L which maps to L under 

reduction rood POp as Op is P adicaily closed. There is an embedding of £p 

in C. [We note in passing that this not a topological embedding.] This gives an 

embedding of L in E6(C). 

For the remainder of this section, we take L = L(2, 13) and O as in Lemma 

7.1. We will prove the main theorem about subgroups isomorphic to L(2,13) in 

/~6(k) by lifting them to E6(Op), proving a result there, and then reducing rood 

P for suitable P.  

THEOREM 8.1: Let k be a finite field of characteristic p, and suppose p 

{2,3, 7,13} (i.e., p does not divide [L(2,13)1). I lL  is a subgroup of F, e( k ) isomor- 

phic to L(2,13) for which the character on K is 1 -I- 12 + 14 or 13 + 14, then L is 
N _ _  

conjugate in Ee( k ) to the reduction rood POp of the appropriate group defined 

in Lemma 7.1. /n the 1 + 12 + 14 case L is conjugate within the stabilizer in 

E6(k) of a fixed 1 space o f K  (a group of type F4 over-k) to this reduction. The 

conjugation can in fact be done in any extension of k which contains primitive 

13th and cube roots of unity and a root of x a + x 2 - 2x - 1 in the F4 case. 

We prove this by establishing the following result. 

THEOREM 8.2: Let 0 and P be as in Lemma 7.1. Suppose L is a subgroup of 

E6(Op) isomorphic to L(2, 13) for which the character is 13+14 or 1+12+14 and 

suppose p ¢ {2,3, 7, 13} (i.e., p does not divide [L(2, 13)1 ). Then L is conjugate 

/12 E6(Op) to one of the groups defined in Lemma 7.1. /n particular there are 

unique conjugacy classes of such subgroups in/~e(Op). 

Proof." Because OR contains all 13th and 3rd roots of unity, and 13, 3 ¢ P, 
we may diagonalize the 27 x 27 matrix corresponding to u and put the 27 x 27 

matrix corresponding to t in monomial form. Thus, we may assume that the Borel 
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subgroup of L coincides with the one given in §2, and L must be as reviewed in 

§7. 
The coefficients for A, B, C, F,  G, B',  C', F ' ,  G' obtained in Lemma 7.1 in 

the 13 + 14 case have P local coefficients as the only denominators are 2, 13, and 

7 and the numerators are a l l in  O. This means the Op span of the {Xi, Xi,, Xij} 
contains the Op span of {vi,v~}. But the matrices 

1 ' B'  C'  ' F '  

all have determinants which are P local integers not in P.  In particular the 

determinants are (3 + 6w)A, (21 + 3v/-L-7)~2/28, (21 - 3v/-L--7)w/28 and A sat- 

isfies 132A 2 = - ( 3  + 4w). This means that the Op span of the standard basis 

{Xi,Xi, ,Xij} is contained in the Op span of {vi,v~} and so they are the same. 

Denote this span by U. The representation obtained in Lemma 7.1 gives an 

embedding of L(2,13) in E6(Op) with action on U. 

The same ideas work for the 1 + 12 + 14 case. Note first that A is a unit in the 

P local integers as its minimal polynomial has leading and constant terms which 

are P local units. The values of B and C are P local integers as that is true for 

their squares. Recall R1 is a P local unit as its norm is. Because the resultants 

of R2 and R3 with h are P local units, there can be no common root of Ri and h 
and so B and C are also P local units. As above we need to know the matrices 

have determinants which are P local units. The first does as above. For the 

second we have chosen B'  = 1. If we let B = AC the equation (23) implies 

1 + A 2 is a unit. But as in §7, the equation (v' ,  v~, v12) = - (B ' B  + C'C) = 0 
implies C'  = - AB ' ,  so the second determinant is - ( 1  + A2)C which is a unit. 

This means the Op span of the {Xi,Xi,,Xij} is the same as the Op span of 

{vi, v~}. Again denote this span by U. As above the representation obtained in 

Lemma 7.1 gives an embedding of L(2,13) in E'6(Op) with action on U fixing 

' Let L be this subgroup of E6(Op). Suppose L1 is a subgroup as in the 1),. 

hypothesis. There is an element in E6(C) which conjugates L to L1 by Theorem 

3.1. We will show that the conjugating element in E6(C) is in E6(Op). Suppose 
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this element is S. Recall that  vo is one of the unique vectors v fixed by ~ for 

which tv = w2v and (v, v, v) = 6. The other such vectors are wv and w2v. These 

are permuted by the scalar wI, an element of E.  Once v0 is determined, all the 

remaining vi and v~ are determined by the t and ~ images and the condition 

(Vo,Voo,v'.) = - 3 A .  We show that  Vo* = Svo has coefficients in OR and not in 

P.  At any rate  (v0*, v0*, v0*) = 6 which is not in P and so the coefficients cannot 

all be in P.  Let P O p  = ~rOp and let 7r" be the highest power of lr occurring in 

the denominators of v0*. Assume s # 0. Let ~* and t .  be the S conjugates of 

and t which are in E~(Op). Now v* = ~r'v0* is an element with coefficients in Op 

but  not all in P.  Further v* is an eigenvalue for ~* and t .  with eigenvalues 1 and 

w 2. Now reduce (~*,t*) mod  P O p  and consider its action in E6(k') .  The vector 

v* is not the zero vector but satisfies (v*, v*, v*) = 0. However by Lemma 2.1 

there is a vector v I for which (v ' ,v l ,v  ') = 6 which is not 0 in k I and on which the 

action of (~*,t*) is the same as on v*. Furthermore there is a unique vector with 

this action to within scalars. This is a contradiction and shows that  s = 0 and so 

v0* has coefficients in OR. The same argument shows that  Sv'. has coefficients 

in Ov and not in P.  This argument shows that  SU is an OR submodule of U. 

But the same argument applied to S -1 shows that S - 1 S U  is an OR submodule 

of SU and so U is a submodule of SU. Now U = SU and all coefficients in S 

and S -1 are in OR. This proves Theorem 8.2. II 

Proof of Theorem 8.1: Suppose L is as in the hypotheses. Lift it to E6(Op)  as 

discussed above. Then, by Theorem 8.2, the lifted image is conjugate in E6(Op)  

to the corresponding group defined in Lemma 7.1. II 

We now come to the actual implications for finite fields. 

THEOREM 8.3: Let p be a pr ime other than {2, 3, 7, 13} and q a power ofp. Then 

E6(q) or E6(q s) contains subgroups isomorphic to PGL(2,13) for which the action 

on K is 1 + 12 + 14. The subgroup will be in E6(q) / / ' and  only i/' GF(q) contains 

the trace of the 12 dimensional character which is a root of x 3 + x 2 - 2x - 1. 

This subgroup is in F4(q). The group E6(q) contains a subgroup isomorphic 

to L(2, 13) /.or which the action on K is 13 + 14 i f  and only i f  GF(q) contains 

v / - -~ .  Otherwise, 2E6(q) contains a subgroup isomorphic to L(2, 13)/.or which 

the action on K is 13 + 14. By its definition, 2E6(q) is a subgroup o/. E6(q2). 

An y  group in E6(q) conjugate in E6 over an extension field to (•,t-) in Lemma 

2.1 is in a unique conjugacy class of each o/' these L(2, 13)s. 



84 D. WALES AND A. COHEN Isr. J. Math. 

Remark: It is shown in [As87] that the group G2(q) contains an L(2, 13) if and 

only if V ~  is in GF(q). It follows from work in [Tel that G2(q) is in Es(q) if and 

only if ~ is in GF(q). Theorem 8.3 shows that L(2, 13) is in Ee(q) if and only 

if either both square roots are in GF(q) or both not in GF(q). 

P roof  of Theorem 8.3: Let k be the field obtained by adjoining to GF(q) the 

roots of z 1~ - 1, z 3 - 1, z 2 + 7 and let ~ be the Frobenius automorphism whose 

fixed field is GF(q). The construction in Lemma 7.1 reduced modulo POp in the 

13 + 14 case provides an embedding of L(2, 13) in Ee(k). We denote the images 

of u, t, w in E~(k) by ~, t, ~ .  The field automorphism corresponding to ~r fixes 

and acts on ~ by raising it to a power s. A product of this with conjugation 

by an element normalizing ~ must centralize ~ and act on (g, t ) .  Denote this 

automorphism by r .  This must normalize or interchange the two L(2, 13)s which 

contain (~, t ) .  The field automorphism fixes each of the L(2,13)s if and only if 

it fixes ~ from observing the action particularly on the 13 space. But ~ is 

fixed if and only if vfL-7 is in GF(q). Conjugation by an element normalizing 

tlxes each L(2 ,13)  if and only if the element is in L(2,13) which happens if and 

only if 8 is a square mod 13 which happens if and only if GF(q) contains a square 

root of 13. Now r fixes each L(2,13) if and only if ~ is in GF(q). If it fixes 

an L(2,13) it must induce an inner automorphism as no outer automorphism 

centralizes the element of order 13. Now a conjugate is centralized and so is 

in E6(q). A graph automorphism of Ee which centralized g could not fix the 

L(2,13)s or the fixed points would be in F4 or C4. Neither is consistent with 

the action on K.  [For F4 fixes a nonzero vector, whereas L(2, 13) has no nonzero 

fixed vectors, and for C4 the only irreducible L(2, 13) representations possible in 

the natural 8 dimensional representation space N for C4 are of dimension 7 or 

6, while K ~ A 2 N  as C4 modules.] In either case the action on K could not 

be 13 -{- 14. Consequently if ~ is not in GF(q) neither the graph nor r acts 

on each L(2, 13) and so the product of the two must. Again a conjugate is in 

2Edq). 
We may use the same idea for the 1 + 12 + 14 character by adjoining roots of 

h or z 3 + x 2 - 2x - 1 if necessary. There is a PGL(2, 13) in Es(k) with each of 

the three algebraic conjugates of the character 1 -{- 12 + 14. If GF(q) contains a 

root of z 3 + z 2 - 2z - 1 the field automorphism normalizes each and so is inner 

and so fixes a conjugate. This means they are all in E6(q). Otherwise they are 

all in Edq ). 
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The statement about conjugates follows from these arguments and Theorem 

8.1 1 

R e f e r e n c e s  

[AsI] 

[AsII] 

[AslII] 

[AsIV] 

[As8T] 

[Atlas] 

[CGL] 

[cw83] 

[CW92] 

[Di] 

[Freu] 

[Go] 
[Mag] 

[NaSh] 

M. Aschba£her, The 27-dimensional module for E6, I, Inventiones Math. 8 9  

(1987), 159-195. 

M. Aschbacher, The 27-dimensional module for E6, II, J. London Math. Soc. 

3 7  (1988), 275-293. 

M. Aschbacher, The 27-dimensionM module for Ee, III, Trans. Amer. Math. 

Soc. 321 (1990), 45-84. 

M. Aschba~her, The 27-dlmensional module for E6, IV, J. Algebra 131 (1990), 

23-39. 

M. Aschbacher, Chevalley groups of type G~ as the group of  a trilinear form, 

J. Algebra 109 (1987), 131-259. 

J.H. Conway, R.T. Curtis, S.P. Norton, R.P. Parker and E.A. Wilson, Atlas 

of  Finite Groups, Clarendon Press, Oxford, 1985. 

A.M. Cohen, R.L. Griess, Jr. and B. Lisser, The group L(2, 61) embeds in the 

Lie group of type Es, Comm. Algebra (1993), to appear. 

A.M. Cohen and D.B. Wales, Finite subgroups of G2(C), Comm. Algebra 11 

(1983), 441-459. 

A.M. Cohen and D.B. Wales, Finite subgroups olEo(C) and F4(C), preprint 

1992. 

L. Dickson, A class of  groups in the arbitrary reahn connected with the con- 

figuration of  the 27 lines on a cubic surface, Quarterly J. Pure Appl. Math 33 

(1901), 145-173. 

H. Freudenthal, Beziehungen der E7 und Es zur Oktavenebene, VIII, Indaga- 

tiones Math. (1959), 447-465 

D. Gorenstein, Finite Groups, Harper & Row, New York, 1968. 

K. Magaard, The Maximal Subgroups of  the Chevalley Groups F4(F) where F 

is a Finite or Algebraically Closed Field of  Characteristic ~ 2, 3, PhD Thesis, 

Caltech (1990). 

M.A. Naimark and A.I. Shtern, Theory of Group Representations, Grundleh- 

ren der Math. Wiss. 246, Springer, Berlin, 1982 



86 D. WALES AND A. COHEN Isr. J. Math, 

[spst] 

[Te] 

T.A. Springer and R. Steinberg, Conjugacy classes in classical groups, in Sem- 

inar on Algebraic Groups and Related Finite Groups (A. Borel, ed.), Lecture 

Notes in Math. 131, Springer-Verlag, Berlin, 1970, pp. E82-E100. 

D. Testerman, A construction of certain maximal subgroups of the algebraic 

groups Ee and F4, J. Algebra 122 (1989), 299-322. 


